Focus on POCUS: Improved Diagnosis for Pneumothorax
Alissa Chen, MD, Trey Bowen, MD, Amed Logrono, MD
Yale Primary Care Internal Medicine Residency Program, New Haven, Connecticut

Learning Objectives
➢ Review the epidemiology and etiologies for secondary pneumothorax.
➢ Understand the increased sensitivity of lung ultrasound compared to chest x-ray in the diagnosis of pneumothorax
➢ Understand the limitations of lung findings from POCUS

Case Description
➢ Patient R: an 85-year-old man with a history of COPD, OSA, and CAD
➢ Acute onset dyspnea on exertion when getting out of bed in the morning. Dyspnea slightly worsened throughout the day.
➢ Vitals: 97.2 °F, 80 BPM, 150/98 mmHg, 95% (RA)
➢ Pulmonary Exam: Unlabored breathing at rest. Tachypnea with talking and walking. No decreased breath sounds, rales, rhonchi, or wheezing
➢ Cardiac Exam: Normal S1 and S2, no rubs/murmurs/gallows

Hospital Course

Care Timeline
00:00 – Arrival to the ED
00:40 – Chest X-Ray showing lingular and left retrocardiac opacities
01:45 – Administered doxycycline and ceftriaxone
03:30 – Arrival to the floor – resident-performed POCUS for educational purposes showed poor visualization of lung sliding on the left. Attributed to poor technique due to inexperience
06:00 – Started on BIPAP
12:00 - Patient began experiencing worsening shortness of breath. Exam revealed decreased left sided lung sounds
13:00 – Repeat Chest X-Ray showed moderate left sided pneumothorax without evidence of tension

Discussion
➢ Incidence of secondary pneumothorax is 12 per 100,000. 4 in 5 of these cases have COPD
➢ While CXR is most often used to evaluate for pneumothorax, ultrasound is almost twice as sensitive for detection
➢ Positive likelihood ratio of ultrasound detecting pneumothorax is 87
➢ Accuracy is dependent on operator skill
➢ The initial normal CXR gave the team a false sense of security against a pneumothorax
➢ Lack of experience with POCUS prevented confidence in findings

Conclusions
POCUS training should be integrated into residency training, as it can lead to earlier diagnosis and more timely interventions.

Laboratory Workup

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (x1000/µL)</td>
<td>11.1</td>
</tr>
<tr>
<td>% Neutrophils</td>
<td>60</td>
</tr>
<tr>
<td>Troponin I (ng/mL)</td>
<td>0.00</td>
</tr>
<tr>
<td>BNP (pg/mL)</td>
<td>169</td>
</tr>
<tr>
<td>SARS CoV-2</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Acknowledgements
We would like to thank Drs. Joseph Donroe, Yihan Yang, Karen Wang, and Donna Windish for their guidance and support throughout this case.

Follow Up
Patient R had a chest tube placed with resolution of his pneumothorax. Three months later, he had recurrence which required pleurodiesis.